SAIT AIRC Invited Seminar II - Industrial AI & Application in Manufacturing

Sunghee Yun

Co-founder / VP - AI Technology & Product Strategy

Erudio Bio, Inc.

Sunghee Yun

Apr 24, 2024

Machine Learning algorithms for TS data

TS data

• definition of times-series:

$$x: T \rightarrow \mathbf{R}^n$$
 where $T = \{\ldots, t_{-2}, t_{-1}, t_0, t_1, t_2, \ldots\} \subseteq \mathbf{R}$

• example: material measurements: when n = 4

$$x_t = \begin{bmatrix} \text{thickness}(t) \\ \text{temperature}(t) \\ \text{pressure}(t) \\ \text{feature_size}(t) \end{bmatrix}$$

• for (semi-)supervised learning, we assume two time series

$$x: T \to \mathbf{R}^n$$
 and $y: T \to \mathbf{R}^m$

Time index

- time index does not have to be *time* index
- more general defintion

$$x: T \to \mathbf{R}^n$$
 where $T = \{\ldots, s_{-2}, s_{-1}, s_0, s_1, s_2, \ldots\}$

where $\cdots < s_{-1} < s_0 < s_1 < \cdots$ defines an ordering (e.g., total ordering)

- for example, x_s and y(s) can represent the features and target values for a processed material (*e.g.*, wafer in semiconductor manufacturing), s, where they are not measured at the same time
- (throughout this talk, though, we will use time-index)

• canonical problem:

(stochastically) predict y_{t_k} given $x_{t_k}, x_{t_{k-1}}, \dots, y_{t_{k-1}}, y_{t_{k-2}}, \dots$

• various methods exist - depend assumptions on data

- e.g., if assume joint probability distribution, optimal solutions exist, e.g., LSE sense

• however, will not make such assumptions

Problem formulation

• canonical problem formulation:

$$\begin{array}{ll} \text{minimize} & \sum_{k=1}^{K} w_{K-k} \, l(y_{t_k}, \hat{y}_{t_k}) \\ \text{subject to} & \hat{y}_{t_k} = g_k(x_{t_k}, x_{t_{k-1}}, \dots, y_{t_{k-1}}, y_{t_{k-2}}, \dots) \end{array}$$

where

-
$$g_1, g_2, \ldots : \mathcal{D} \to \mathbf{R}^m$$
 - optimization variables

- $\mathcal{D} = \mathbf{R}^n \times \mathbf{R}^n \times \cdots \mathbf{R}^m \cup \{\text{null}\} \times \mathbf{R}^m \cup \{\text{null}\} \times \cdots$ - domain of g_k

$$-l: \mathbf{R}^m imes \mathbf{R}^m o \mathbf{R}_+$$
 - loss function

- w_i (decreasing) weight on loss
- no label is given for some k, i.e., $y(t_k) = \mathsf{null}$

ML solution candidates

- ignore temporal dependency $\hat{y}_{t_k} = g(x_{t_k})$
 - supervised learing such as DL (e.g., MLP), decision trees
 - classiscal statistical learning such as lasso, ridge regression, partial least squares
 - boosting algorithms such at XGBoost

- consider temporal dependency sequential MLs
 - RNN-base: LSTM, GRUs
 - attention mechanism, e.g., classical attention-type, Transformer-type, etc.

Credibility intervals for TS value prediction

- prediction of uncertainty of prediction
- every point prediction is wrong!

 $-\mathbf{P}(\hat{y}_t = y_t) = 0$

- reliability of prediction matters
 - none literature deals with this (properly)
- critical for our customers, *e.g.*, *downstream applications*
 - if used for APC, need to know when it should be used
 - sometimes, more crucial than algorithm accuracy

Find credibility intervals

• multiple criteria

- probability of true value falling into an interval: for fixed a > 0

$$\mathbf{P}(|Y_k - \hat{Y}_k| < a) = \mathbf{P}(Y_k \in (\hat{Y}_k - a, \hat{Y}_k + a))$$

– predictive distribution size: find a > 0 such that

$$\mathbf{P}(|Y_k - \hat{Y}_k| < a) = 90\%, \ e.g.$$

- distribution of Y_k : find PDF of Y_k
- out solution Bayesian inference
 - given initial distribution or prior, p
 - update p with new data using Bayesian inference

Bayesian approach for credibility intervals

• assume conditional distribution ith predictor parameterized by $heta_{i,k}\in\Theta$

$$p_{i,k}(y(t_k)|x_{t_k}, x_{t_{k-1}}, \dots, y(t_{k-1}), y(t_{k-2}), \dots) = p_{i,k}(y(t_k); x_{t_k}, \theta_{i,k})$$

- depends on prior & current input, *i.e.*, $\theta_{i,k}$ & x_{t_k}
- update $heta_{i,k+1}$ from $heta_{i,k}$ after observing true $y(t_k)$ using Bayesian rule

$$p(w; \theta_{i,k+1}) := p(w|y(t_k); x_{t_k}, \theta_{i,k}) = \frac{p(y(t_k)|w, x_{t_k})p(w; \theta_{i,k})}{\int p(y(t_k)|w, x_{t_k})p(w; \theta_{i,k})dw}$$

• if $p(\cdot; \theta)$ is conjugate prior, can update $\theta_{i,k}$ very efficiently in online manner within fraction of milliseconds

Real application

• observe

- initially predictor not sure about its prediction
- after a while, the credibility interval (CI) converges
- when shift happens, CI increases (as it should be)
- this information *crucial for downstream applications*, *e.g.*, process control

TS anomaly detection problems

- types of anomaly detection problems given $x:T \to \mathbf{R}^n$
 - point anomaly find x_{t_k} considerably different from other data
 - segment anomaly find k_1 and k_2 s.t. TS segment $x_{t_k}|_{k=k_1}^{k_2}$ is considerably different from other data
 - sequence anomaly given $x^1, \ldots, x^n : T \to \mathbf{R}$, find x^i considerably different from other TSs

TS segment anomaly detection algorithm

- use classification given $x_{t_j}|_{j=k-l+1}^k$, *i.e.*, segment of length, l
 - training:
 - one classifier, c, and, p feature extractors, f_i
 - for each \boldsymbol{k}
 - extract p features using extractors $y_{i,k} = f_i\left(x_{t_j}|_{j=k-l+1}^k\right)$
 - train the classifier, c, with $(y_{1,k},1)$, $(y_{2,k},2)$, \ldots , $(y_{p,k},\dot{p})$, as training data
 - inferencing:
 - given new segment $x_{t_j}|_{j=k-l+1}^k$, apply c to the extracted features, $y_{i,k}$
 - if substantically different from $(1,2,\ldots,p)$, it is anomaly
 - "difference" quantified by some anomaly score, e.g., KL divergence or entropy

Sunghee Yun

Apr 24, 2024

What really matters in productionization

List of efforts required

- MLOps for CI/CD
- data preprocessing missing values, inconsistent names, difference among different systems
- feature extraction & selection
- monitoring & retraining
- notification, via messengers or emails
- main line merge approvals by humans
- data latency, data reliability, & data availability

Sunghee Yun

Apr 24, 2024

Manufacturing AI Software System Development

Manufacturing AI Software System

- data, data, data! store, persist, retrieve, data quality
- seamless pipeline for development, testing, running deployed services
- development envinroment should be built separately

Thank You! - sunghee.yun@erudio.bio